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Key Points

Question
What is the genetic basis of olfactory dysfunction, and is it causally related to adverse health

outcomes?

Findings

This genome-wide association study meta-analysis (GWMA) of 22,730 European and 1,030
African participants identified a novel genomic locus, enriched for olfactory receptor genes,
robustly associated with olfactory dysfunction. Two-sample Mendelian Randomization
analyses provided evidence for causal associations of olfactory dysfunction with biochemical,

anthropometric and cardiovascular health outcomes.

Meaning
These findings provide new insights into the genetic architecture of olfaction and implicate

olfactory dysfunction as a causal risk factor for many aspects of human health.
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Abstract

IMPORTANCE
Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative
diseases and has been associated with increased mortality in older adults; however, its genetic

basis remains largely unknown.

OBJECTIVE

To identify the genetic loci associated with olfactory dysfunction in the general population.

DESIGN, SETTING AND PARTIICIPANTS

This genome-wide association study meta-analysis (GWMA) included participants of
European ancestry (N = 22,730) enrolled in four different large population-based studies,
followed by a multi-ancestry GWMA including participants of African ancestry (N = 1,030).
The data analysis was performed from March 2023 through June 2024.

EXPOSURES

Genome-wide single nucleotide polymorphisms.

MAIN OUTCOMES AND MEASURES

Olfactory dysfunction was the outcome and assessed using a 12-item smell identification test.

RESULTS

GWMA revealed a novel genome-wide significant locus (tagged by rs11228623 at 11q12)
associated with olfactory dysfunction. Gene-based analysis revealed a high enrichment for
olfactory receptor genes in this region. Phenome-wide association studies demonstrated
associations between genetic variants related to olfactory dysfunction and blood cell counts,
kidney function, skeletal muscle mass, cholesterol levels and cardiovascular disease. Using
individual-level data, we also confirmed and quantified the strength of these associations on a
phenotypic level. Moreover, employing two-sample Mendelian Randomization analyses, we

found evidence for causal associations between olfactory dysfunction and these phenotypes.



medRxiv preprint doi: https://doi.org/10.1101/2024.08.09.24311665; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

CONCLUSIONS
These findings provide novel insights into the genetic architecture of the sense of smell and

highlight its importance for many aspects of human health.
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Introduction

Olfactory function is paramount to both safety and quality of life, enabling detection of
hazardous or unpleasant odors, and contributing to the enjoyment of scents, food and drink.
Impairment of olfaction is very common, affecting approximately 1 in 5 adults, with an
increased prevalence among older individuals." Indeed, aging is a major determinant of
olfactory dysfunction and is thought to affect both the central and peripheral olfactory
system. Other risk factors associated with smell loss in adults include sinonasal diseases,
smoking, and alcohol consumption.1 Moreover, reduced sense of smell is a well-established
consequence of coronavirus disease 2019 and one of the earliest markers of many
neurodegenerative diseases. >4 Importantly, olfactory dysfunction itself has been suggested as
a risk factor associated with cognitive decline,5 frailty,6 cardiovascular diseases,7 kidney
function,8 and increased mortality.9 However, the causality of these associations remains to
be elucidated. Thus, uncovering the genetic architecture of olfactory dysfunction could not
only provide novel molecular targets for its treatment, but could also be instrumental to

assessing whether decreased sense of smell is causally related to adverse health outcomes.

Despite the high prevalence of olfactory dysfunction and its involvement in a variety of
diseases, the genetic architecture of olfactory dysfunction remains largely unknown. Odor
identification, the most commonly studied component of olfactory function, has been shown
to have a low to moderate heritability.'”'" A previous genome-wide association study
(GWAS) of olfactory function identified nine genome-wide significant loci associated with
odor identification among African Americans (N = 1,979), but only two among European
Americans (N = 6,582)."*" Interestingly, many of these regions were related to
neurodegenerative and neuropsychiatric diseases.'*"> More recently, Raj et al. examined the
association between single nucleotide polymorphisms (SNPs) located in or near olfactory
receptor genes (32,282 SNPs) and the ability to identify individual odors, detecting a larger
number of SNPs (9,267 SNPs) at a suggestive statistical significance level (p < 0.001).
However, none of these SNPs remained significant after adjustment for multiple testing,

failing to replicate the findings from the previous GWAS."
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We aimed to further elucidate the genetic architecture of olfactory dysfunction by performing
the largest GWAS and meta-analysis of sense of smell to date, among adults of European and
African ancestry, using data from four different large-scale, population-based studies.
Moreover, using a two-sample Mendelian Randomization (MR) approach, we investigated

the causal relationship between olfactory dysfunction and different health-related outcomes.

Methods

Study population

We included 1,030 individuals of African American ancestry (AAs) from the ARIC Study,15
and 22,730 individuals of European ancestry (EUR) from the Rhineland Study, the ARIC
Study, the LIFE-Adult-Study16 and the Cooperative Health Research in South Tyrol (CHRIS)

study,'” who had complete genetic and olfactory function data (Table 1).

Assessment of olfactory function
In the Rhineland Study, the ARIC Study, and the LIFE-Adult-Study, olfactory function was

assessed using the 12-item "Sniffin' Sticks" odor identification test (SIT-12), a widely utilized
screening instrument for assessing odor identification ability.'® In the CHRIS study, the 16-
item "Sniffin' Sticks" odor identification test was employed and for this analysis restricted to
the SIT-12 items. Olfactory dysfunction was defined as the total number of incorrectly

identified odors on the SIT-12 test (range 0-12) (eMethods in Supplement 1).

Genotyping, quality control and imputation

Genotyping was performed in all four cohorts using commercially available genetic arrays
(eMethods in Supplement 1), followed by standard quality control measures. In brief,
quality control was performed using PLINK (version 1.9), excluding SNPs based on poor
genotyping rate (< 99%), minor allele frequency (MAF) < 1% or Hardy-Weinberg
Disequilibrium (p < 1 x 10”-6). Imputation of genotypes was performed through IMPUTE
(version 2)," using as reference panels 1000 Genomes phase 3 version 5 in the Rhineland
Study and the LIFE-Adult cohort, 1000 Genomes version 1 phase 3 in the ARIC Study, and
TOPMed in the CHRIS cohort.” Variants with imputation quality score below 0.3 were

excluded.”!
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Genome-wide association studies

We performed an ancestry-specific GWAS of olfactory dysfunction in each cohort separately,
using Generalized Linear Mixed Model Association Tests (GMMAT ).22 Since olfactory
dysfunction was defined as a count variable and followed a Poisson distribution, we applied a
log-link function to model the association of each SNP with olfactory dysfunction, using the
score test for computational efﬁciency.22 For variants that were genome-wide significant (p <
5 x 107-8) based on the score test, we rerun the analyses while applying the Wald test to
obtain estimates for the effect sizes and associated standard errors. In model 1, we adjusted
for age, sex and the first 10 genetic principal components to account for population structure.
In model 2, we additionally adjusted for APOE*e4 carrier/non-carrier status and global
cognitive function as these factors have previously been associated with a poor sense of

smell.'”

Meta-analysis of genome-wide association studies

The score test- and the Wald test-based results from GMMAT were meta-analyzed using the
sample size-weighted or the fixed effects inverse variance-weighted method, respectively, as
implemented in the meta-analysis tool for genome-wide association scans (METAL).”
Additionally, we performed a multi-ancestry meta-analysis by combining GWAS results
from both European and African ancestry participants using a random effects model as
implemented in METASOFT.* The genome-wide statistical significance threshold was set at

p <5x 107-8.

Genomic risk loci
We used the Functional Mapping and Analysis of GWAS (FUMA) platform to identify

genomic risk loci.”> Genome-wide significant SNPs in relatively high linkage disequilibrium
(LD) (i.e., r* > 0.6) with nearby SNPs were used to define genomic risk loci, merging LD
blocks of independently significant SNPs within 250 kb of each other into a single genomic
locus. Within each genomic locus, we defined the lead SNPs as those SNPs that are
independent of one another at r* < 0.1, using the 1000 Genome Phase 3 reference panel. (e

Methods in Supplement 1).
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Phenome-wide association studies and confirmation of phenotypic

associations using individual-level data

We used the Open Target Genetics platform26 to perform phenome-wide association studies
(PheWAS) for the systematic identification of phenotypes associated with genetic variations
related to olfactory dysfunction. The Benjamini-Hochberg false discovery rate (FDR) method
was used for multiple comparisons adjustment. In addition, using individual-level data from
the Rhineland Study, we assessed whether phenotypes associated with genetic variants of
olfactory dysfunction (after FDR correction), were also associated with a poor sense of smell
on a phenotypic level. To this end, we employed multivariable regression models with

statistical significance inferred at FDR-adjusted p < 0.05 (eMethods in Supplement 1).

Two-sample Mendelian Randomization

We employed a two-sample Mendelian Randomization (MR) approach to test whether the
associations between olfactory dysfunction and the phenotypes identified in the previous step
were causal, using the TwoSample MR package.27 For the outcomes, we obtained GWAS
summary statistics using the IEU GWAS database (eTablel3 in Supplement 2).*” To assess
the risk of weak instrument bias, we calculated the F-statistic for the selected genetic

instruments (eMethods in Supplement 1).**

Results

Population characteristics

The study and ancestry specific population characteristics are provided in Table 1. On
average, participants of European ancestry had a lower degree of olfactory dysfunction and
scored higher on cognitive tests compared to those of African ancestry. Moreover, APOE*e4

allele carrier frequency was lower in participants of European ancestry.

GWAS meta-analysis
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The GWAS meta-analysis of European ancestry participants identified 22 and 1523 genome-
wide significant SNPs located on chromosome 11 based on results from model 1 and model
2, respectively (Figure 1). Overall, the genomic inflation factor (X) in each European cohort
was low, ranging from 0.49 t to 1.01 (eFigure 1 in Supplement 1). Because the A-value was
relatively low (0.49) in the ARIC European ancestry cohort, indicating genomic deflation, we
also performed a sensitivity analysis in which we corrected the p-values in this group by
dividing the chi-squared statistic by A% and re-running the European-based meta-analysis.
This, however, did not change the results (eFigure 2 in. Supplement 1). In model 2, the
meta-analysis identified one lead SNP (rs11228623), as well as three independent significant
SNPs (rs12786376, rs34099256, and rs369532258), across one genomic risk locus (11q12)
(Table 2, Figure 2, and eTables 1-4 in Supplement 2). In the multi-ancestry GWAS meta-
analysis, the associations of the lead SNP (rs11228623) and one of the independent SNPs
(rs12786376) with olfactory dysfunction remained directionally consistent and genome-wide

significant (Table 2).

The olfactory dysfunction-associated SNPs were mapped to genes based on positional, eQTL
and chromatin interaction mapping. Positional mapping identified 34 olfactory receptor
genes. We discovered 3 genes (OR5SM11, SLC43A3 and PRG2) based on eQTL mapping of
which one gene (OR5M11) overlapped with those identified through positional mapping
(eTables 5 & 6 in Supplement 2). Chromatin interaction mapping, based on Hi-C data,
showed significant (FDR < 1 x 107-6) chromatin interactions between enhancers of candidate
genes in this region and the promoter regions of MPEGI, LRR45, and OR4A16, as well as
those of several other genes on chromosome 11q12 (eFigure 3 in Supplement 1 & eTable7
in Supplement 2). After Bonferroni-correction, gene-based analysis using MAGMA
identified 21 genome-wide significant (p < 2.6 x 10"-6) genes, with OR5M 11 as the top hit (p
< 8.4 x 10"-9) (eTable8 in Supplement 2). In the MAGMA gene-set enrichment analysis,
the top gene sets were enriched for “reactome hedgehog ligand biosynthesis” and “reactome
degradation of beta catenin by the destruction complex” (eTable9 in Supplement 2), but
none survived multiple testing correction. Interrogation of MSigDB showed that the mapped
genes at the 11q12 locus were significantly enriched for pathways related to “general odorant
binding proteins, sensory perception of smell”, “molecular function, odorant binding” and

“Grueneberg Ganglion, olfactory transduction” (eFigure 4 in Supplement 1).

10
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Gene expression analysis

Of the 41 genes identified through positional, eQTL and chromatin interaction mapping,
expression levels were available for MPEGI (tagged by rs12786376) and SLC43A3 (tagged
by rs1811871001) in whole blood for 1985 participants in the Rhineland Study. Olfactory
dysfunction was not associated with the expression levels of these two genes. However, a
borderline significant interaction with age was found for SLC43A3. Age-stratified analysis
showed that higher SLC43A3 expression was associated with worse olfactory function at
borderline significance for participants aged 30-50 years (eTablel0 in Supplement 2).
However, we found no significant association between rs1811871001 and SLC43A3

expression, or 1s12786376 and MPEG1 expression.

Phenome-wide association studies and phenotypic associations

The lead SNP (rs11228623), located within 5 kb downstream of the ORSM7P gene, was
associated with 71 phenotypes after FDR correction (eTable 11 in Supplement 2). The
identified traits included lymphocyte counts, eosinophil counts, lymphocyte percentage (%)
of white cells, eosinophil percentage (%) of white cells, coffee intake, pulse rate,
hypertension, mean appendicular mass and levels of cystatin-C (a marker of kidney function).
In participants of the Rhineland Study, we could confirm that olfactory dysfunction was
indeed significantly associated with lymphocyte, neutrophil and basophil cell counts,
Ilymphocyte percentage of white blood cells, total white blood cell counts, coffee intake,
skeletal muscle mass, hand grip strength, levels of cystatin-C, heart rate, hypertension, and at
borderline significance with heart failure (p < 0.07) (Figure 3A, and eTablel2 in
Supplement 2).

Two-sample Mendelian Randomization

After LD clumping, we identified one robust genetic instrument for olfactory dysfunction
(rs11228623) with an F-statistic of 45.33, indicating a low probability of weak instrument
bias. Two-sample MR analyses indicated causal associations between olfactory dysfunction
and lymphocyte cell counts, as well as lymphocyte, neutrophil and eosinophil percentages of
white blood cells, total white blood cell counts, appendicular lean mass, hand grip strength,

11
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coffee intake, hypertension, pulse rate and cardiovascular disease (Figure 3B, and eTable13

in Supplement 2).

Discussion

We performed the largest genome-wide meta-analysis of olfactory dysfunction to date
(N=22,730), discovering 1524 genome-wide significant variants and 21 genes associated with
olfactory dysfunction in people of European descent. Importantly, the novel lead SNP
(rs11228623-T at 11q12) was genome-wide significant and exhibited directionally consistent
effects in both ancestry-stratified and multi-ancestry analyses. Gene mapping and gene set
analysis prioritized multiple genes and pathways involved in odour reception and signalling.
Importantly, combining PheWAS with individual-level and MR analyses, we found evidence
for a causal association between olfactory dysfunction and several anthropometric, metabolic,

cardiovascular, renal and inflammatory phenotypes.

We identified a genomic risk locus for olfactory dysfunction at 11q12, enriched for olfactory
receptor genes related to sensory perception of smell and olfactory transduction. The lead
SNP (rs11228623-T) at this region is located downstream of the ORSM7P pseudogene. Using
eQTL analyses we mapped the independent SNP (rs12786376-A) to three other genes
(OR5M11, PRG2 and SLC43A3). Individual-level blood expression data were available for
SLC43A3, and indicated an age-dependent association between SLC43A3 expression levels
and olfactory dysfunction. SLC43A3 encodes a membrane transporter protein, and has been
shown to control free fatty acid flux in adipocytes.”® To our knowledge, this is the first time
this gene and its expression have been linked to olfactory dysfunction. The majority of the
other identified genes are mainly expressed in the olfactory epithelium and, therefore, could

not be detected in the blood transcriptome.

The results of our MR analyses indicate that olfactory dysfunction affects anthropometric,
metabolic, cardiovascular, renal and inflammatory phenotypes, highlighting its detrimental
effects across different organs and tissues. This included associations of olfactory dysfunction
with skeletal muscle mass and hand grip strength, which have been identified before.”’* A
potential explanation could be that smell loss leads to changes in dietary habits, resulting in

changes of muscle composition and strength. Conversely, it has been hypothesized that

12
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lifestyle factors, like exercise, or comorbidities might concurrently affect muscle strength and
the neuronal determinants of olfaction.”’ Our MR analyses support the former rather than the
latter hypothesis. This is further supported by the causal association of olfactory dysfunction
with coffee intake, a dietary habit, and cholesterol levels, which are dependent on diet.
Similarly, we found that olfactory dysfunction was causally associated with hypertension,
increased heart rate and a higher prevalence of heart failure. This could indicate that olfaction
affects cardiovascular risk through dietary patterns and obesity, while brain vascular damage
or even cardiovascular medication may affect olfaction.”* Olfactory dysfunction was also
causally associated with white blood cell counts and percentages, particularly those of
neutrophiles and lymphocytes. As with anthropometric and cardiovascular phenotypes, this
association could be mediated by dietary and/or metabolic changes. Alternatively, a neuro-
immune interaction may be involved, since neurotransmitter release following olfactory
stimuli might modulate the immune response to enhance defence against infections, for
example when pathogens are detected by the olfactory receptors.34 Perturbations of this
neuro-immune cross-talk due to olfactory dysfunction may lead to changes in lymphocyte

and neutrophil production.

Limitations

The main limitation of our study is the relatively small number of participants from non-
European ancestry; however, to the best of our knowledge, other large-scale population-based
studies assessing olfactory dysfunction are currently lacking, precluding substantial increases
of sample size in the near future. Moreover, we could replicate the association between the
top genetic variant and olfactory dysfunction in people of European descent in those of
African-American ancestry, but generalizability to other ethnic populations needs further
investigation. Although in our MR analyses, we used a single SNP as an instrumental
variable, the risk of horizontal pleiotropy is likely to be relatively low given the location of
this variant in a region enriched for olfactory receptor genes. This was further supported by a
high F-statistic for this variant, indicating a strong association between the genetic instrument

and olfactory dysfunction, and thus low risk of weak instrument bias.

Conclusions
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We performed a multi-ancestry genome-wide meta-analysis of olfactory dysfunction in
22,730 individuals and found one genomic locus (11q12) robustly associated with olfactory
dysfunction. Moreover, our analysis uncovered several genes such as ORSM7P and OR5M11
related to olfactory dysfunction. Importantly, we demonstrate that olfactory dysfunction is
causally associated with muscle strength and mass, cardiovascular diseases, cholesterol
levels, kidney function and white blood cell counts and composition. Thus, our findings
provide new insights into the genetic architecture of olfaction and implicate olfactory
dysfunction as a causal risk factor for anthropometric, metabolic, cardiovascular, renal and
inflammatory phenotypes. Given the high prevalence of olfactory dysfunction among aging
populations, the genetic variants and molecular pathways identified here could facilitate
development of novel preventive and therapeutic strategies against a range of different age-

associated diseases.
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Table 1. Baseline characteristics of participating cohorts.

Characteristic RHINELAND ARIC ARIC LIFE- CHRIS
EA AA ADULT
N 6580 3654 1030 4771 6696
Age (years) 559 +13.5 759 +£52 75.0£5.1 574 + 44.6 +
12.97 16.5
Women, % 554 56.0 66.0 514 532
Olfactory 2.10+1.71 248 £2.29 4.01 £2.59 2.06 + 1.6+1.55
dysfunction score 1.72
(mean £ SD)
APOE*e4 allele 1233 (26%) 922 (25%) 394 (38%) 1148 2396
carriers, % (24.1%) (35%)
Global cognition -0.57+£0.55 - -
score
(mean + SD)
MMSE - 27923 256+33 28.98 +
(mean * SD) 1.62
Cognition 24 +6.34
(CERAD)

Abbreviations: AA: African-American; ARIC: Atherosclerosis Risk in Community Study; CHRIS: The
Cooperative Health Research in South Tyrol; EA: European-American; EUR: European; LIFE-Adult: LIFE-
Adult Cohort; MMSE: Mini-Mental State Examination, range of possible score 0-30; CERAD: Consortium to
Establish a Registry for Alzheimer's disease Neuropsychological Battery; RHINELAND: Rhineland Study;
SD: Standard deviation.
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Table 2. Independent genome-wide significant single nucleotide polymorphisms (1* < 0.6 and
p <5 x 107-8) associated with olfactory dysfunction in European GWAS meta-analysis, and
comparison with the cross-ancestry meta-analysis. The results displayed are summary

statistics derived from the GWAS meta-analysis of Wald test results.

SNP C Position Effec Othe EA  Location Gene Meta-analysis’
hr (GrCh37 t r F
) Allele Allele EUR
Bet SE P-value Directi 12
a on'’
rs1122862 11 5626445 T C 0.6 Downstrea ORSM7 - 0.009 2.2x 107- e 0
3 3 m P 0.06 11
rs1278637 11 5586895 A C 0.8 intergenic ORSH2 - 0.015 8.5x 107- e 0
6 1 0.09 11
rs3409925 11 5610800 T TA 0.5 intergenic ORS8K2 0.06 0.011 9.3x 10 +,2,+,? 0
6 4 P 9
rs3695322 11 5595964 T TA 0.5 intergenic OR8VI 0.06 0.010 2.0x 10" +72+?2 343
58 6 P 8

" The lead independent single nucleotide polymorphism of the genomic locus.

 The meta-analyses were based on results from model 2, in which we adjusted for age, sex, APOE genotype,
cognitive function and the first 10 genetic principal components.

1 Effect directions are shown in the order: Rhineland study, Atherosclerosis Risk in Community Study (ARIC);
LIFE-Adult Cohort; Cooperative Health Research in South Tyrol (CHRIS) cohort.

Abbreviations: AFR: African-American, Chr: chromosome; EUR: European; SE: Standard Error; EAF: Effect
Allele Frequency; I2: heterogeneity index (0-100 scale).
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Figure legends

Figure 1. Genome-wide association meta-analysis of olfactory function. Manhattan (A) and corresponding
quantile-quantile plot (B) of the genome-wide meta-analysis of sense of smell in people of European ancestry
for model 1. Manhattan (C) and corresponding quantile-quantile plot (D) of the genome-wide meta-analysis of
the sense of smell in people of European ancestry for model 2. The horizontal red dashed lines indicate the

threshold for genome-wide significance (i.e., p <5 x 107-8).

Figure 2. Regional plots of the lead and candidate genetic variants. The figure shows positional mapping of
the 11q12 locus with the top lead single nucleotide polymorphism (SNP), as well as variants in linkage

disequilibrium with this SNP according to the r*-color coded key.

Figure 3. Comparison of phenotype-level and Mendelian Randomization estimates for associations
between olfactory dysfunction and different traits and diseases identified through phenome-wide
association studies. A) Forest plot depicting associations between olfactory dysfunction and other phenotypes
(identified through phenome-wide association studies after false discovery rate correction) using individual-
level data from the Rhineland Study. The standardized regression estimate indicates the change in standard
deviations in the outcome for one standard deviation increase in olfactory dysfunction. B) Forest plot showing
causal estimates from two-sample Mendelian Randomization analyses of the effect of olfactory dysfunction on
other phenotypes (Wald ratio test). The regression estimate indicates the change in standard deviations in the
outcome for the effect allele of the lead genetic variant (for binary outcomes, including hypertension, heart

failure, coronary artery diseases, the regression estimate refers to the logarithm of the odds ratio).
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